Snow: two weeks less on average in mountain areas than in 1982
- Deutsch
- English
- Italiano
Snow: two weeks less on average in mountain areas than in 1982
New study by Eurac Research confirms negative global trends in mountain areas
cs-snowcovertrend-it-ok.docx
pm-snowcovertrend-de-ok.docx
pr-snowcovertrend-en.docx
DOWNLOAD PRESS KIT
As this year’s dry summer draws to a close we are all looking forward to a winter season filled with precipitation that is neither extreme nor destructive. A study by Eurac Research recently published in the Nature journal’s Scientific Reports paints a discouraging picture of recent decades. Between 1982 and 2020, the period of snow cover in mountain areas around the world decreased by an average of about 15 days. The Alps are in line with the average where the reduction in snow cover sits between 10 and 20 days. The study strengthens the results of earlier research by extending the observation period and has also helped to make a NASA model more accurate.
Two years ago, an initial study of global snow cover announced how in 78 percent of mountain areas, snowfall had declined over the past 20 years. To bolster these observations, the same author has now extended the start of data collection to 1982, thus covering a 38-year period up to 2020. “Unfortunately, there are no denials of these trends, only confirmations,” explains Claudia Notarnicola, physicist, deputy director of Eurac Research’s Institute for Earth Observation and sole author of the study. “With a few exceptions, data on both the extent and duration of snow cover are clearly decreasing.” Specifically, there are on average, 15 fewer days that snow remains on the ground, with peaks of 20 or even 30 fewer days in Canada’s western provinces (dark orange, figure 1). Coverage has decreased by a total of four percent, which when multiplied by the extent of the areas affected by negative trends (yellow, figure 2) presents an alarming dataset. The few existing counter-trend figures are hardly encouraging. For example, in the early 1980s, the eruption of Mexico’s El Chichon volcano caused a slight cooling that counteracted the decrease in snowfall, but this phenomenon has not lasted long. “In general, over these 38 years of analysis there are also some cases of increases in both coverage and snow days (blue, figure 2). Specifically in parts of Central Asia and some valleys in the United States,” Notarnicola continues. “There are no consensus explanations for these phenomena, but they could be other effects of climate change, for example variations in currents and winds or specific microclimatic conditions. In any case, these are a few exceptions in a very negative global context.”
The study itself took a hybrid approach by combining MODIS satellite data time series from 2000 until 2020 with a resolution of 500 meters, and mathematical models. “I chose a highly attested NASA global model as the basis and then refined it. In fact, for the period when the data from the model and the more precise satellite images overlapped, I was able to better calibrate the model thanks to so-called ‘artificial neural networks’, a computational system that falls under the aegis of artificial intelligence,” Notarnicola explains.
Download
snow-two-weeks-less-on-average.zip
USAGE RIGHTS
All material intended for the dissemination of communicative and press-related activities on this page is available provided that the source is clearly stated. Any communicative material that is used, must reference content of the press release exclusively. Eurac Research communication material may only be used only for non-commercial purposes and may not be resold or passed on to third parties.
Contact
Communication
T +39 0471 055 038 valentina.bergonzi@eurac.edu
Eurac Research
Drususallee 1/ Viale Druso 1
39100 Bozen / Bolzano