4RinEU

EU H2020 4RinEU - Robust and Reliable technology concepts and business models for triggering deep Renovation of Residential buildings in EU

  • Deutsch
  • English
  • Italiano
4RinEU

4RinEU will define robust, cost-effective, tailorable deep renovation technology packages supported by usable methodologies, feeding into reliable business models. The project will minimize failures in design and implementation, manage different stages of the deep renovation process, from the preliminary audit up to the end-of-life, and provide information on energy, comfort, users’ impact, and investment performance.

The 4RinEU deep renovation strategy is based on 3 pillars: (i) technology (driven by robustness) to decrease net primary energy use (60 to 70% compared to pre-renovation), allowing a reduction of life cycle costs over 30 years (15% compared to a typical renovation) (ii) methodology (driven by usability) to support the design and implementation of the technologies improving the information flow and knowledge sharing among stakeholders to sustain participative design, ensuring to halve the current renovation time (iii) business models (driven by reliability) to enhance the level of confidence of deep renovation investors, increasing the EU building stock transformation rate up to 3% by 2020.

The 10 main results of 4RinEU project will address the following objectives:

Technology: to reduce demand (1.Prefab Multifunctional Façade, 2.Comfort Ceiling Fan), to improve energy efficiency (3.Plug&Play Energy Hub, 4.Objective-based RES Implementation), to improve building operations (5.Sensible Building Data Handler), and to reduce construction waste (6.Strategies for Components End-Of-Life).

Methodology: to accurately understand renovation issues and potentials (7.Cost-Optimal Energy Audit), to ensure an effective and participated design (8.Investor and Building User-Oriented Design Tool and Method based on BIM), to reduce construction time and failures (9.Deep Renovation Implementation Management).

Business model: to identify the level of risk of renovation process and to enable well-founded investments supported by tailor-made financial tools (10.Cost-effectiveness Rating System).

4RinEU aims at building deep renovation balancing investment and performance targets, by defining robust, cost-effective, tailorable, deep renovation technology packages supported by usable methodologies, feeding into reliable business models. The project will minimize risk of failures in the whole value chain, as well as the uncertainties in timing, costs, performance results, exploring different ways to trigger deep renovation actions, allowing a meaningful EU replication. The reliable business models that we will define within 4RinEU will make investors (single owner, multi-owners, social housing organizations, large real estates, developers) more confident in all the renovation phases. Indeed, EU defined a framework to foster the energy efficiency based on the assumption of smart finance for smart buildings, strengthening the concept of bankable projects able to convince private investors offering a reliable investment environment.

Buildings are long-term assets expected to remain useful for 50 or more years and 75-90% of those standing today are expected to remain in use in 2050. With low demolition rates (0.1% per year), and low rate of new highly energy efficient buildings (1% added per year), EU energy efficiency challenge in buildings mainly concerns the investments in renovation of the existing buildings stock (presently at a rate of 1.2% per year).

Energy Efficiency Financial Institutions Group recommends the development of common set of procedures and standards for energy efficiency and building renovation underwriting for both debt and equity investments. Several renovation technologies are available but the application is limited because of different key barriers:

  • Technical: lack of easy to apply, integrated, tailorable packages;
  • Social: no easy access to information on right behaviours, best practices and strategies for achieving environmental comfort and energy saving, lack of commitment of the users;
  • Credibility: uncertainties in term of actual performances and costs as well as responsibilities in case of delay or failures;
  • Financial: lack of access to affordable finance to carry out the renovation.

IEA estimated that applying the current policies and common practices, less than 20% of the economically viable energy efficiency investments will be realized within 2035. Therefore, there is a clear need of robust concepts and reliable approaches to increase the investors’ confidence and to up-scale the energy efficiency investment. In fact, due to long-lasting, ‘layered’ structured renovation process, failure risks, and the typical top-down, supply driven structure of the European building market with a mismatch between offer and user needs and assets,  owners/investors hesitate to renovate their properties.

4RinEU has the overall objective to define robust, cost-effective, tailorable, deep renovation technologies and usable methodologies, feeding into reliable business models. The project will address the development of approach to minimize failures in design and implementation of deep renovation, managing different stages of the process, up to the end-of-life, and providing base information and high-level knowledge on energy, comfort, users’ impact, investment performance.

4RinEU deep renovation strategy is based on three pillars: robust technologies, usable methodologies and reliable business models addressing the following challenges.

  • Technology development (driven by robustness) to improve key passive, active, and control solutions, optimizing the integration and interactions among building components in dynamic contexts, ensuring a drastic reduction of net primary energy use (60 to 70%) compared to pre renovation levels) for different building working conditions, high indoor environmental quality, building functionality, architectural value, allowing reduction of life cycle costs (15% compared to a typical renovation).
  • Methodology development (driven by usability) to support the design and implementation of robust, tailorable, cost-effective deep renovation packages in different boundary conditions, through multi-objective optimization, ensuring reduction of implementation time (by a factor of 2 compared to typical renovation through pre-fabrication and specific solutions for the management of the building site), and keeping the same performance level in the whole building life cycle.
  • Business models development (driven by reliability) to trigger EU building stock transformation, durably increasing the renovation rate up to 3% before 2020, as fixed by “renovate-Europe” campaign. This will be sustained by a reliable economic viability of deep renovation, quantified by an increased internal rate of return.

Around such these three pillars, the project 4RinEU aims to reach the following results:

Robust Technologies

  • Result1: Prefab multifunctional façade
  • Result2: Comfort ceiling fan smart operation
  • Result3: Plug&Play Energy Hub - PPEH
  • Result4: RES best use in renovation process - Early-RENo
  • Result5: Sensible Building Data Handler
  • Result6: Strategies for building/components end-of-life

Usable Methodologies

  • Result7: Cost-optimal (investment vs achievable information) energy audit
  • Result8: Investor and building user oriented design platform based on BIM
  • Result9: Deep renovation implementation management

Reliable Business Models

  • Result10: Cost-effectiveness rating system

The effort within 4RinEU in the development of robust technologies and usable methodologies is the key to build the concrete basement for the definition of reliable business models, that we identified as the mean for convincing to invest resources in buildings deep renovation. A 4RinEU business model is meant as a comprehensive framework, including (i) costs, (ii) benefits, (iii) role and responsibilities of the stakeholders, (iv) technical and economic level of risks making uncertainty explicit, as well as (v) possible contingency plans. It will be the driver towards deep renovation, supporting the key decision on when/why/how/ to renovate a building. The key concept is to structure technological and methodological knowledge to provide clear information to the stakeholders in order to increase the level of confidence enhancing the awareness on the cost-effectiveness of the renovation, and then fostering the spontaneous investments. In this regards, 4RinEU will develop a strong dissemination and communication plan for the stakeholders with the objective to reach both common users through simple tools (e.g. informative user-friendly cookbooks for renovation, contextualised benchmarking for building energy consumptions) and professionals through specific technical channels.

This content is hosted by a third party. By showing the external content you accept the terms and conditions.
Publications
Integrating Heat Pumps in Existing Residential Buildings
Fedrizzi R (2023)
Internet

More information: https://www.buildup.eu/en/news/overview-article-integrating- ...

Facciate prefabbricate multifunzionali in legno per la riqualificazione degli edifici

Pinotti R (2023)
Internet

More information: https://www.ingenio-web.it/articoli/facciate-prefabbricate-m ...

Tool for Building Integrated Photovoltaics (BIPV) early design optimisation
Adami J (2022)
Internet

More information: https://www.buildup.eu/en/node/62244

https://hdl.handle.net/10863/22892

Overcoming the main barriers to the uptake of building retrofit through an industrialised approach
Pinotti R (2022)
Internet

More information: https://www.buildup.eu/en/node/62746

Repository of Deep Renovation Packages Based on Industrialized Solutions: Definition and Application
Pernetti R, Pinotti R, Lollini R (2021)
Journal article
Sustainability

More information: https://www.mdpi.com/2071-1050/13/11/6412/htm

https://doi.org/10.3390/su13116412

https://hdl.handle.net/10863/17772

Multi-objective battery sizing optimisation for renewable energy communities with distribution-level constraints: A prosumer-driven perspective
Secchi M, Barchi G, Macii D, Moser D, Petri D (2021)
Journal article
Applied Energy

More information: https://doi.org/10.1016/j.apenergy.2021.117171

https://doi.org/10.1016/j.apenergy.2021.117171

https://hdl.handle.net/10863/17483

The Role of Flexibility in Photovoltaic and Battery Optimal Sizing towards a Decarbonized Residential Sector
Dallapiccola M, Barchi G, Adami J, Moser D (2021)
Journal article
Energies

More information: https://www.mdpi.com/1996-1073/14/8/2326/htm

https://doi.org/10.3390/en14082326

https://hdl.handle.net/10863/17165

Riqualificare non è solo una questione di energia
Lollini R, Pernetti R (2020)
Journal article
Condominio: Quotidiano del Sole 24 Ore

More information: https://www.quotidianocondominio.ilsole24ore.com/art/risparm ...

https://hdl.handle.net/10863/16445

Riqualificazione energetica degli edifici: una facciata multifunzionale in legno da aggiungere a quella esistente
Pinotti R (2018)
Internet

More information: https://www.casaeclima.com/ar_34904__Riqualificazione-energe ...

https://hdl.handle.net/10863/9672

L’approccio integrato alla riqualificazione profonda degli edifici: il progetto 4RinEU
Lollini R, Giuliani M, Pernetti R, Noris F, Signore G (2018)
Internet

More information: https://www.ingenio-web.it/19003-lapproccio-integrato-alla-r ...

https://hdl.handle.net/10863/9662

Related Tools & Services
1 - 1

2020EQ-OX Environmental Quality bOX

The”Environmental Quality bOX" EQ-OX is a device to assess measure the main parameters that affect the quality of the ...

Related Case Studies
1 - 1

2021Multi-family house, Haugerudsenter, Oslo

This refurbishment project, managed by Boligbygg, involved improving the façade using prefabricated modules with ...

Our partners

Projects

1 - 10

view all

Institute's Projects